Electron Beam Setup for Bubble Chamber

A. Hofler, Accelerator-Physics Experiment Liaison (APEL)

J. Benesch, B. Cade, A. Freyberger, J. Grames, R. Kazimi, M. McCaughn, D. Moser, M. Poelker, & R. Suleiman

August 22, 2018

Improvements since 2015 Engineering Run

- Dipole
 - More accurate dipole field map [1,2]
 - Dipole current readback resolution
 - Readback with Digital Multimeter (Keithley 2000)
 - Higher resolution (1 mA) than trim card readback (5 mA)
 - Hall probe in dipole
 - · Measure field in dipole
 - Digital Teslameter (Group3 Technology DTM-151)
 - MPT-231 Hall probe (Group3 Technology MPT-231)
 - Stray magnetic field shielding in 5D line [3]
- Beam diagnostics
 - Wire scanner beam profile monitor (harp) in 5D line
 - Measure beam size upstream of radiator

- Procedures for Operations [4]
 - Set energy
 - Use dipole Hall probe readback to set momentum delta and reproduce setting
 - Measure energy
 - Measure energy spread with harp in 2D line
 - Set optics to produce requested spot size on radiator
 - · Quadrupole scan technique
 - Wire scanner beam profile monitors (harps) in straight ahead and 2D lines
- [1] R. Sulieman, BTeam presentation, 2016
- [2] J. Benesch, JLAB-TN-017, 2015
- [3] R. Sulieman, e-log 3392568, 2016
- [4] Bubble Chamber wiki (http://wiki.jlab.org/ciswiki/index.php/Bubble_Chamber)

Energy Measurement

Procedure:

- 1. A priori, center beam in quadrupole closest to BPM and note positions (except 2D—no quads).
- 2. Turn OFF and cycle all unnecessary magnets around hysteresis loop.
- 3. Degauss dipole.
- 4. Establish straight ahead orbit with restricted corrector magnet set.
- 5. Adjust dipole setting (and cycle) for zero orbit in each dump BPM.

For fixed incoming momentum, $p = p_{2D} = p_{5D}$,

$$\frac{\alpha_{2D}}{\alpha_{5D}} = \frac{-30^{\circ}}{25^{\circ}} = \frac{B_{2D}\ell_{arc_{2D}}}{B_{5D}\ell_{arc_{5D}}}$$

Fits of dipole settings give p and errors in angle and field.

Note dipole setpoint

- < 0 for beam in 2D line
- > 0 for beam in 5D line

Measured Energies

Design p (MeV/c)	Design K.E. (MeV)	2D line dipole setting (G cm)	5D (Bubble) line dipole setting (G cm)	Measured p (MeV/c)	Measured K.E. (MeV)
5.84	5.35	-9937.637	8168.800	5.885	5.395
5.74	5.25	-9865.500	8099.000	5.840	5.355
5.64	5.15	-9632.300	7909.200	5.705	5.215
5.54	5.05	-9468.500	7771.400	5.605	5.115
5.44	4.95	-9320.700	7646.800	5.515	5.030
5.34	4.85	-9135.993	7490.000	5.405	4.920
5.24	4.75	-8957.675	7338.900	5.300	4.815

Beam Energy Errors

- Dipole current uncertainty is 1 mA
 - Average dipole current for beam in 5D line 3.177 A
 - Average dipole current for beam in 2D line -3.817 A
 - ➤ 0.03% uncertainty
- Field map uncertainty is 7 G cm [1,3]
- Magnet Model (to find momentum from field map) uncertainty is about 0.1% [2,3]
- Errors in bend angle and stray fields are still under study

Errors Summary (so far):

Error	Uncertainty		
Dipole Current	0.03%		
Field Map [1,3]	0.1%		
Magnet Model [2,3]	0.1%		
Total	0.14		

^[1] R. Sulieman, BTeam presentation, 2016

^[2] J. Benesch, JLAB-TN-017, 2015

^[3] J. Grames, JLAB-TN-17-001, 2017

Summary and Future Plans

Efforts since 2015 Engineering Run to improve

- dipole field characterization
- monitoring of dipole current and field
 - ⇒ Successful set and measurement of energies during the 2018 Engineering Run

Minor Suggested Changes for Future Engineering Runs

- To set and verify beam spot position on the radiator
 - Install retractible X-ray screen in front of the radiator
- To reliably set the beam size at the radiator Improve optics model to more accurately reflect beam dynamics affecting beam size

- To reduce variability in setting and measuring the energy
 - Put controller for Hall probe in a shielded box and move to floor (eliminate controller resets)
 - Reduce number of magnets used in straight ahead orbit (reduce fields)
 - Improve ability to measure and reproduce beam orbit angles through dipole
 - fiducialize 2D and 5D harps
 - add quads to 2D line for quad centering to establish orbit reference Jefferson Lab

Summary and Future Plans

- Efforts since 2015 Engineering Run to improve
 - dipole field characterization
 - monitoring of dipole current and field
 - ⇒ Successful set and measurement of momenta/energies during the 2018 Engineering Run
- Minor suggested changes for future Engineering Runs

- To better measure blat
 - Will do this
 - To test in next run
- · Dipole Hall probe resets
 - Put controller in lead box
 - Move to floor
- Disagreement between calculated and measured beam sizes at IHA5D01

Minor Issues and possible mitigations:

- straight ahead orbit
 - improve set up procedure (to eliminate/reduce unnecessary magnetic fields)
- stray fields
 - more shielding
- how well know beam orbit angles
 - fiducialize 2D and 5D harps
 - add quads to 2D line for quad centering/establish orbit reference
- beam position on copper radiator
 - X-ray screen at radiator for steering

