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Philosophy 

•To cover the possible methods of measuring flux density but 

concentrating on the most frequently used methods. 

 

•Note that magnetic field H is a measure of the excitation 

(creation) of the magnetic phenomenon; all measurable effects 

are driven by the flux density B. 

 

•Note that measurement ‘accuracy’ involves three different 

facets:  resolution; 

stability and repeatability; 

absolute calibration. 
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Contents: 

1. Physical effects available for measurement: 

 

a) force on a current carrying conductor; 

b) electromagnetic induction; 

c) Hall effect (special case of (a)); 

d) nuclear magnetic resonance. 

 

2. Practical applications: 

a) point-by-point measurements; 

b) rotating coil methods; 

c) traversing coils. 
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Force on a current carrying conductor 

    F = B I 

 where:   F is force per unit length; 

    B is flux density; 

    I is current. 

Advantages: 

  integrates along wire; 

  I can be accurately controlled and measured. 

Disadvantages: 

  not suitable for an absolute measurement;  

  measurement of F is not very highly accurate; 

  therefore not suitable for general measurements. 
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Use in spectrometry 

specialised trajectory tracing 

in experimental magnets: 

 

‘Floating wire’ technique - 

wire is kept under constant 

tension T and exit point is 

measured for different 

entry points.  

T 

T 

B 

I 
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Electromagnetic induction 

  curl E  = - B / t; V = B An sin wt. 

(V is induced voltage; B is flux density; A is coil area; n is coil turns. 

Advantages: 

  V can be accurately measured; 

  Gives B integrated over the coil area. 

Disadvantages:       

  / t must be constant (but see later); 

  absolute accuracy limited by error in value of A; 

Can be sufficiently accurate to give absolute measurements but best for 

relative measurements. 

Used: 

 standard measurements of accelerator magnets;  

 transfer standards;  
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Hall effect 

Special case of force on a 

moving charge; a metal 

(or semiconductor) with a 

current flowing at right 

angles to the field develops 

a voltage in the third plane: 

   V = - R ( J x B ) a 

where:   V is induced voltage; B is field; 

   J is current density in material; 

   a is width in direction of V 

   R is the 'Hall Coefficient' ( fn of temperature ): 

   R = fn (a, q); 

   q is temperature; a is temperature coefficient.  

V
J

B
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Hall effect (cont.) 

Advantages: 

  small light probe; 

  easily portable/moved; 

  J, V accurately measurable – good resolution, repeatability; 

  covers a very broad range of B; 

  works in non-uniform field. 

Disadvantages: 

  q must be controlled  measured/compensated; 

  R and a must be known accurately. 

Used: 

  commercial portable magnetometers; 

  point-by-point measurements; 
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Nuclear magnetic resonance. 

 In an external magnetic field, nuclei with a magnetic moment 
precess around the field at the Larmor precession frequency: 

    n   (g /2 p) B; 

 where:   n  is the precession frequency; 

     g  is the gyro-magnetic ratio of the nucleus; 

    B   is external field. 

 A radio-frequency e-m field applied to the material at this 
frequency will produce a change in the orientation of the spin 
angular momentum of the nucleus, which will ‘flip’, absorbing 
a quantum of energy. This can be detected and the r.f. 
frequency measured to give the precession frequency and 
hence measure the field. 
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Spin transition. 

The ‘spin flip’ in a nucleus: 

n

M

B

n

Example: 

 

for the proton (H 

nucleus): 

with B = 1 T; 

n = 42.6 MHz. 
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N.M.R. (cont.) 

Advantages: 

• only dependent on nuclear 
phenomena - not influenced 
by external conditions; 

• very sharp resonance; 

• frequency is measured to very 
high accuracy (1:106); 

• used at high/very high B. 

   

Disadvantages: 

• probe is large size (~ 1cm); 

• resonance only detectable in 

highly homogeneous  B; 

• apparatus works over limited 

B range, (frequency n is too 

low at low B); 

• equipment is expensive; 

Use: 

•most accurate measurement system available; 

•commercially available; 

•absolute measurement of fields; 

•calibration of other equipment. 
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Practical Applications – Point by point  

A probe is traversed in 2 or 3 planes with B measured by a Hall 

plate at each point to build up a 2/3 dimensional map.  

x
y

z

Superseded by 

rotating coils for 

multi-poles, but 

still the method of 

choice for a small 

number of high 

quality dipoles. (It 

is too slow for a 

production series) 
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Modern Hall-probe Bench used at DL for 

insertion magnets. 

Hall Probe     MPT-141-3m (Group 3); 

Teslameter     DTM-141-DG        “ 

Longitudinal Range    1400   mm 

Horizontal Range    200   mm 

Vertical Range     100   mm 

Longitudinal Resolution (z)  1   mm 

Horizontal Resolution (x)   0.5   mm 

Vertical Resolution (y)   0.5   mm 

Nominal Longitudinal Velocity   1   mm/s 

Maximum Calibrated Field   2.2   T 

Hall Probe Precision    ± 0.01 % 

Hall Probe Resolution    0.05   mT 

Temperature Stability    ± 10   ppm/°C 
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Rotating Coil systems. 

Magnets can be measured using rotating coil systems; suitable for 

straight dipoles and multi-poles (quadrupoles and sextupoles). 

This technique provides the capability of measuring: 

•amplitude; 

•phase; 

  integrated through the magnet (inc end  

  fringe fields) of each harmonic present, up to 

  n ~ 30 or higher; 

 and: 

•magnetic centre (x and y); 

•angular alignment (roll, pitch and yaw) 
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The Rotating Coil 

  A coil continuously rotating (frequency w) would cut 

the radial field and  generate a voltage the sum of all the 

harmonics present in the magnet: 

B
 = const.

+

C 

-C 

+C 

-C 

+C 

-C 

dipole: V = sin wt 

quad: V = sin 2 wt 

sextupole: V = sin 3 wt etc. 
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Continuous rotation 

The coil (as shown) is rotated 

rapidly in the magnetic field; the 

induced voltage is analysed with 

a harmonic analyser. 

Induced voltage : 

  

  

V = / t = N coilAcoil Br/ t;

   = N coilcoil n 2r n 1(An sin  nq +  Bn  cos nq)(q/ t) 
n 1





w

V

Continuous rotation is now regarded as a primitive method! 
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Problems with continuous rotation 

  Sliding contacts:  generate noise – obscures small 
    higher order harmonics; 

 

Irregular rotation: (wow) generates spurious   
   harmonic signals; 

 

Transverse oscillation 
of coil:   (whip-lash) generates noise and 

    spurious harmonics. 
 
 Solution developed at CERN to measure the LEP multi-pole 

magnets. 
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Solution: 

Rotation and data processing: 

• coil cylinder make < 2 revolutions in total; 

• windings are hard wired to detection equipment; 

• an angular encoder is mounted on the rotation shaft; 

• the output voltage is converted to frequency and integrated 
w.r.t. angle, so eliminating any /t effects; 

• integrated signal is Fourier analysed digitally, giving 
harmonic amplitudes and phases. 

Specification: relative accuracy of integrated field  ±3x10-4; 

  angular phase accuracy    ±0.2 mrad; 

  lateral positioning of magnet centre  ±0.03 mm; 

  accuracy of multi-pole components  ±3x10-4 
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Rotating coil configurations 

Multiple windings at different radii (r) and with different 

numbers of turns (n) are combined to cancel out harmonics, 

providing greater sensitivity to others: 

3r/4

+n-n +n-n -2n+2n-n

r/4

+n

All 

harmonics 

All odd 

harmonics, 

1,3,5 etc. 

Dipole and 

quadrupole 

rejected. 



Neil Marks; ASTeC, U. of Liverpool, CI. Magnet measurements; Lecture to Cockcroft Institute, December 2009 

A rotating coil magnetometer. 
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Test data used to judge Diamond quads 
(acknowledgement to Tesla Engineering for spread-sheet developed for Quad measurement) 

Validity This template is current Midplane adjustment Next actions (Refer first):

Iteration No. 1 (+ to open) DLS referral done? (Yes/No/NA) yes

Magnet type identifier WM East (um): 240 Reject/Hold for refer? (S4, C6+)

Magnet serial WMZ086 West (um): 80 Adjust vertical split (S3)? Yes

Top (um): 80 Adjust midplane (C3/C4)? Yes

Bottom (um:) 0 Full align?

Date of test 12/07/2005 C3 switch 1 Adjust dx only?

Tester Darren Cox S3 switch 1 Accept magnet?

Comments: 180A preliminary C4 switch 1

DLS comments: Please insert comments here S4++ switch 1

Dipole+NS007 reference angle 137.89068 (update fortnightly) Full switch 1

Adjusted dipole reference angle 137.90085 dx switch 1

Field quality data Post-shim Alignment data Value Outcome

prediction [good pass/pass]

R(ref) (mm) 35.00 dx [0.025/0.05]mm -0.089 Fail

Current (A) 180.00 dy [0.025/0.05]mm -0.059 Fail

Central strength (T/m) 17.6328 DLS OK? dz [2.5/5.0]mm 2.414 Good pass

L(eff) (mm) 407.253 ?Yes/No? Roll [0.1/0.2]mrad 0.052 Good pass

C3 (4-8) -0.49 Pass No -0.49 Yaw [0.15/0.3]mrad -0.048 Good pass

S3 (6-12) -10.88 Refer, or shim vertical No -2.33 Pitch [0.15/0.3]mrad -0.085 Good pass

C4 (4-7) 6.90 Refer, or shim horizontal No -2.64

S4 (1-4) 0.80 Pass No -0.04 Adjust X alone?

C6 (2.5-10) 7.97 Refer to DLS yes Alignment OK?

|C10,S10|: (N:3-5, W:6-8) 5.16 Pass No

All other terms up to 20 (2.5-5) 4.98 Refer to DLS yes

Keys to use N key S key NW foot NE foot SW foot SE foot
Next shims to use (rounded) N/A N/A N/A N/A N/A N/A

Shimming History

Iteration# N key S key NW foot NE foot SW foot SE foot

Shims in use 32.010 32.012 19.011 19.020 19.004 19.015

Next shims (measured) 0.000 0.000 0.000 0.000 0.000 0.000

3 0.000 0.000 0.000 0.000 0.000 0.000

4 0.000 0.000 0.000 0.000 0.000 0.000

5 0.000 0.000 0.000 0.000 0.000 0.000

Rounding errors 0.000 0.000 0.000 0.000 0.000 0.000
Warnings
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Traversing coils 

Used in curved dipoles -similar method of data 

acquisition as used in a rotating coil. 
Coil 

Reference 

magnet 

(prototype) 

Magnet 

on test. 

The coil (with multiple radial windings) is traversed from the reference to the 

test magnet; voltage from each winding is integrated; variation from zero in the 

integrated volts, after the traversal, indicates variations from the reference 

magnet total flux vs radius values, which are known. 


