

Magnetic Measurements

Neil Marks,

DLS/CCLRC,

Daresbury Laboratory,

Warrington WA4 4AD,

U.K.

Tel: (44) (0)1925 603191

Fax: (44) (0)1925 603192

Philosophy

- •To cover the possible methods of measuring flux density but concentrating on the most frequently used methods.
- •Note that magnetic field H is a measure of the excitation (creation) of the magnetic phenomenon; all measurable effects are driven by the flux density B.
- •Note that measurement 'accuracy' involves three different facets: resolution;

stability and repeatability;

absolute calibration.

Contents:

1. Physical effects available for measurement:

- a) force on a current carrying conductor;
- b) electromagnetic induction;
- c) Hall effect (special case of (a));
- d) nuclear magnetic resonance.
- 2. Practical applications:
- a) point-by-point measurements;
- b) rotating coil methods;
- c) traversing coils.

Force on a current carrying conductor

F = B I

where: F is force per unit length;

B is flux density;

I is current.

Advantages:

integrates along wire;

I can be accurately controlled and measured.

Disadvantages:

not suitable for an absolute measurement; measurement of F is not very highly accurate; therefore not suitable for general measurements.

Use in spectrometry

specialised trajectory tracing in experimental magnets:

'Floating wire' technique - wire is kept under constant tension T and exit point is measured for different entry points.

Electromagnetic induction

curl $\mathbf{E} = -\partial \mathbf{B} / \partial t$; $V = \mathbf{B} \text{ An sin } \omega t$.

(V is induced voltage; B is flux density; A is coil area; n is coil turns.

Advantages:

V can be accurately measured;

Gives B integrated over the coil area.

Disadvantages:

 $\partial/\partial t$ must be constant (but see later);

absolute accuracy limited by error in value of A;

Can be sufficiently accurate to give absolute measurements but best for relative measurements.

<u>Used:</u>

standard measurements of accelerator magnets;

transfer standards;

Hall effect

Special case of force on a moving charge; a metal (or semiconductor) with a current flowing at right angles to the field develops a voltage in the third plane:

$$V = -R (J \times B) a$$

where:

V is induced voltage; B is field;

J is current density in material;

a is width in direction of V

R is the 'Hall Coefficient' (fn of temperature):

$$R = \text{fn}(\alpha, \theta);$$

 θ is temperature; α is temperature coefficient.

Hall effect (cont.)

Advantages:

```
small light probe;
easily portable/moved;
```

J, V accurately measurable – good resolution, repeatability; covers a very broad range of B; works in non-uniform field.

Disadvantages:

 θ must be controlled measured/compensated; R and a must be known accurately.

<u>Used:</u>

```
commercial portable magnetometers; point-by-point measurements;
```


Nuclear magnetic resonance.

In an external magnetic field, nuclei with a magnetic moment precess around the field at the Larmor precession frequency:

$$v \propto (\gamma / 2 \pi) B$$
;

where: ν is the precession frequency;

 γ is the gyro-magnetic ratio of the nucleus;

B is external field.

A radio-frequency e-m field applied to the material at this frequency will produce a change in the orientation of the spin angular momentum of the nucleus, which will 'flip', absorbing a quantum of energy. This can be detected and the r.f. frequency measured to give the precession frequency and hence measure the field.

Spin transition.

The 'spin flip' in a nucleus:

Example:

for the proton (H nucleus): with B = 1 T; v = 42.6 MHz.

N.M.R. (cont.)

Advantages:

- only dependent on nuclear phenomena - not influenced by external conditions;
- very sharp resonance;
- frequency is measured to very high accuracy (1:10⁶);
- used at high/very high B.

Disadvantages:

- probe is large size (~ 1cm);
- resonance only detectable in highly homogeneous B;
- apparatus works over limited B range, (frequency v is too low at low B);
- equipment is expensive;

Use:

- most accurate measurement system available;
- •commercially available;
- •absolute measurement of fields;
- •calibration of other equipment.

Practical Applications – Point by point

A probe is traversed in 2 or 3 planes with B measured by a Hall plate at each point to build up a 2/3 dimensional map.

Superseded by rotating coils for multi-poles, but still the method of choice for a small number of high quality dipoles. (It is too slow for a production series)

Modern Hall-probe Bench used at DL for insertion magnets.

Hall Probe		MPT-141-3m	(Group 3);
Teslameter		DTM-141-DG	66
Longitudinal Range		1400	mm
Horizontal Range		200	mm
Vertical Range		100	mm
Longitudinal Resolution (z)		1	μm
Horizontal Resolution (x)	0.5	μm	
Vertical Resolution (y)		0.5	μm
Nominal Longitudinal Velocity		1	mm/s
Maximum Calibrated Field		2.2	T
Hall Probe Precision		± 0.01 %	
Hall Probe Resolution		0.05	mT
Temperature Stability		± 10	ppm/°C

Rotating Coil systems.

Magnets can be measured using rotating coil systems; suitable for straight dipoles and multi-poles (quadrupoles and sextupoles).

This technique provides the capability of measuring:

- amplitude;
- •phase;

integrated through the magnet (inc end fringe fields) of each harmonic present, up to n ~ 30 or higher;

and:

- magnetic centre (x and y);
- •angular alignment (roll, pitch and yaw)

The Rotating Coil

A coil continuously rotating (frequency ω) would cut the radial field and generate a voltage the sum of all the harmonics present in the magnet:

dipole: $V = \sin \omega t$

quad: $V = \sin 2 \omega t$

sextupole: $V = \sin 3 \omega t$

etc.

Continuous rotation

The coil (as shown) is rotated rapidly in the magnetic field; the induced voltage is analysed with a harmonic analyser.

Induced voltage:

$$\begin{split} V &= \partial \Phi / \ \partial t = N_{coil} A_{coil} \ \partial B_r / \ \partial t; \\ &= N_{coil} A_{coil} \sum_{n=1}^{\infty} \left\{ \!\! n^2 r^{n-1} (A_n \sin n\theta + B_n \cos n\theta) (\partial \theta / \ \partial t) \right\} \end{split}$$

Continuous rotation is now regarded as a primitive method!

Problems with continuous rotation

Sliding contacts: generate noise – obscures small

higher order harmonics;

Irregular rotation: (wow) generates spurious

harmonic signals;

Transverse oscillation

of coil:

(whip-lash) generates noise and

spurious harmonics.

Solution developed at CERN to measure the LEP multi-pole magnets.

Solution:

Rotation and data processing:

- coil cylinder make < 2 revolutions in total;
- windings are hard wired to detection equipment;
- an angular encoder is mounted on the rotation shaft;
- the output voltage is converted to frequency and <u>integrated</u> w.r.t. <u>angle</u>, so eliminating any $\partial/\partial t$ effects;
- integrated signal is Fourier analysed digitally, giving harmonic amplitudes and phases.

Specification: relative accuracy of integrated field ±3x10⁻⁴; angular phase accuracy ±0.2 mrad; lateral positioning of magnet centre accuracy of multi-pole components ±3x10⁻⁴

Rotating coil configurations

Multiple windings at different radii (r) and with different numbers of turns (n) are combined to cancel out harmonics, providing greater sensitivity to others:

A rotating coil magnetometer.

Test data used to judge Diamond quads

The Cockcroft Institute cknowledgement to Tesla Engineering for spread-sheet developed for Quad measurement)

Validity This template is current		Midplane adjustment		Next actions (Refer first):			
Iteration No.	. 1			(+ to open)	DLS referral done? (Yes/No/NA)	yes	
Magnet type identifier	WM		Ī	East (um):	240	Reject/Hold for refer? (S4, C6+)	
Magnet serial	WMZ086			West (um):		Adjust vertical split (S3)?	Yes
			Ī	Top (um):	80	Adjust midplane (C3/C4)?	Yes
				Bottom (um:)	0	Full align?	
Date of test	12/07/2005			C3 switch	1	Adjust dx only?	
Tester [Darren Cox			S3 switch	1	Accept magnet?	
Comments: 1	80A preliminary			C4 switch	1		
DLS comments:	Please insert comm	ents here		S4++ switch	1		
Dipole+NS007 reference angle	137.89068 (t	update fortnightly)		Full switch	1		
Adjusted dipole reference angle	137.90085			dx switch	1		
Field quality data				Post-shim	Alignment data	Value	Outcome
				prediction	[good pass/pass]		
R(ref) (mm)	35.00				dx [0.025/0.05]mm	-0.089	Fail
Current (A)	180.00				dy [0.025/0.05]mm	-0.059	Fail
Central strength (T/m)	17.6328		DLS OK?		dz [2.5/5.0]mm	2.414	Good pass
L(eff) (mm)	407.253		?Yes/No?		Roll [0.1/0.2]mrad	0.052	Good pass
C3 (4-8)	-0.49	Pass	No		Yaw [0.15/0.3]mrad	-0.048	Good pass
S3 (6-12)	-10.88	Refer, or shim vertical	No		Pitch [0.15/0.3]mrad	-0.085	Good pass
C4 (4-7)	6.90	Refer, or shim horizontal	No	-2.64			
S4 (1-4)	0.80	Pass	No	-0.04		Adjust X alone?	
C6 (2.5-10)	7.97	Refer to DLS	yes			Alignment OK?	
C10,S10 : (N:3-5, W:6-8)	5.16	Pass	No				
All other terms up to 20 (2.5-5)	4.98	Refer to DLS	yes				
Keys to use	N key	S key		NW foot			SE foot
Next shims to use (rounded)	N/A	N/A		N/A	N/A	N/A	N/A
Shimming History							-
Iteration#	N key	S key		NW foot	NE foot		SE foot
Shims in use	32.010	32.012		19.011	19.020		19.015
Next shims (measured)	0.000	0.000		0.000	0.000	0.000	0.000
3	0.000	0.000		0.000	0.000	0.000	0.000
4	0.000	0.000		0.000	0.000	0.000	0.000
5	0.000	0.000		0.000	0.000	0.000	0.000
Rounding errors	0.000	0.000		0.000	0.000	0.000	0.000
Warnings							

Traversing coils

Used in curved dipoles -similar method of data acquisition as used in a rotating coil.

The coil (with multiple radial windings) is traversed from the reference to the test magnet; voltage from each winding is integrated; variation from zero in the integrated volts, after the traversal, indicates variations from the reference magnet total flux vs radius values, which are known.